
Preventing Migraine: The Mechanism of Action of Galcanezumab

- **1. Migraine: Burden of Disease**
- 2. CGRP and Migraine
- **3. Understanding Galcanezumab**

Objectives

Migraine: Burden of Disease

© 2019 Eli Lilly and Company.

What Is Migraine?

A common debilitating neurological disease that affects ~12% (over 1 billion) of the world population¹⁻³

References: 1. GBD 2016. *Lancet.* 2017;390(10100):1211-1259. 2. Steiner TJ, Stovner LJ, Birbeck GL. *J Headache Pain.* 2013;14:1. 3. Woldeamanuel YW, Cowan RP. *J Neurol Sci.* 2017;372:307-315. 4. World Health Organization. http://www.who.int/mental_health/ management/who_atlas_headache_disorders.pdf. Accessed May 21, 2017. 5. Goadsby PJ, Holland PR, Martins-Oliveira M, et al. *Physiol Rev.* 2017;97(2):553-622. 6. Headache Classification Committee of the International Headache Society (IHS). *Cephalalgia.* 2018;38(1):1-211. Women are **3X** more than men

- It is associated with recurrent headaches that can range in severity^{4,5}
- Patients with migraine can exhibit other neurological symptoms, including visual aura, nausea, phonophobia, and photophobia^{5,6}

ICHD-3 Diagnostic Criteria: Migraine

Without Aura

- A. At least five attacks fulfilling criteria B–D
- B. Headache attacks lasting 4–72 hours (when untreated or unsuccessfully treated)
- **C.** Headache has at least two of the following four characteristics:
 - 1. unilateral location
 - 2. pulsating quality
 - 3. moderate or severe pain intensity
 - 4. aggravation by or causing avoidance of routine physical activity (e.g. walking or climbing stairs)
- **D.** During headache at least one of the following:
 - 1. nausea and/or vomiting
 - 2. photophobia and phonophobia
- E. Not better accounted for by another ICHD-3 diagnosis

With Aura

A. At least two attacks fulfilling criteria B and C

B. One or more of the following fully reversible aura symptoms:

- 1. visual
- 2. sensory
- 3. speech and/or language
- 4. motor
- 5. brainstem
- 6. retinal
- C. At least three of the following six characteristics:
 - 1. at least one aura symptom spreads gradually over ≥5 minutes
 - 2. two or more aura symptoms occur in succession
 - 3. each individual aura symptom lasts 5–60 minutes
 - 4. at least one aura symptom is unilateral
 - 5. at least one aura symptom is positive
 - 6. the aura is accompanied, or followed within 60 minutes, by headache
- D. Not better accounted for by another ICHD-3 diagnosis

Reference: Headache Classification Committee of the International Headache Society (IHS). *Cephalalgia*. 2018; 38(1):1-211.

Migraine: A Tremendous Burden

References: 1. D'Amico D, Solari A, Usai S, et al. *Cephalalgia*. 2006;26(6):691-696. 2. Landy SH, Runken MC, Bell CF, et al. *J Occup Environ Med*. 2011;53(1):74-81.

- Migraine has a complex clinical presentation that can vary widely from person to person¹
 - Variable headache frequency and severity
 - Variable symptoms and severity of symptoms

- Migraine prevalence peaks during the most productive working years and can have substantial burden on the individual and workforce²
 - Indirect costs due to increased absenteeism and reduced productivity at work

© 2019 Eli Lilly and Company.

Migraine: An Unmet Need

of patients with migraine worldwide are professionally diagnosed¹

Only 12.4%

of respondents in the 2004 AMPP survey who were diagnosed with migraine were on preventive medication²

 Despite almost 40% of patients being eligible for preventive medication³

of patients will remain on their prescribed preventive treatment⁴

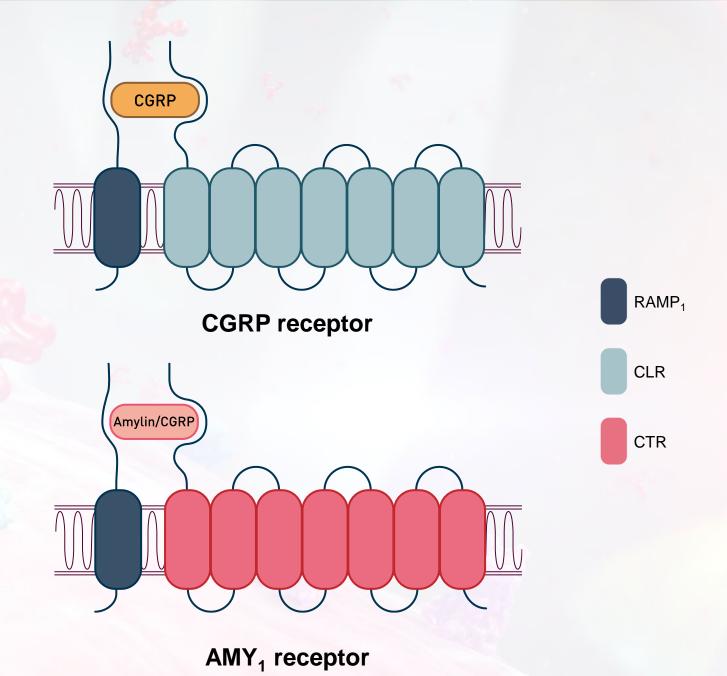
Decreased efficacy and adverse reactions
 were the main reasons for discontinuation⁵

References: 1. World Health Organization. http://www.who.int /mental_health/management/who_atlas_headache_disorders.pdf. Accessed May 21, 2017. 2. Diamond S, Bigal ME, Silberstein S, et al. *Headache*. 2007;47(3):355-363. 3. Lipton RB, Bigal ME, Diamond M, et al; AMPP Advisory Group. *Neurology*. 2007;68(5):343-349. 4. Pike J, Mutebi A, Shah N, et al. *Value Health*. 2016;19:(3)A1-A23. 5. Blumenfeld AM, Bloudek LM, Becker WJ. *Headache*. 2013;53(4):644-655.

Calcitonin Gene-Related Peptide (CGRP)

What Is CGRP?

References: 1. Russo AF. *Annu Rev Pharmacol Toxicol.* 2015;55:533-552. 2. Durham PL. *Headache.* 2006;46(suppl 1):S3-8. 3. Arulmani U, Maassenvandenbrink A, Villalon CM, et al. *Eur J Pharmacol.* 2004;500(1-3):315-330. 4. Eftekhari S, Salvatore CA, Calamari A, et al. *Neuroscience.* 2010;169(2):683-696.


- Calcitonin gene-related peptide, or CGRP, is a small (~37 amino acid) neuropeptide with a wide distribution in both peripheral and central nervous systems¹⁻³
- CGRP is one of the most abundant neuropeptides in the trigeminovascular system¹
 - CGRP is expressed in approximately 50% of neurons in the trigeminal ganglia⁴
- Along with other neuropeptides and neurotransmitters, CGRP is released during a migraine attack and leads to:^{1,2}
 - Activation of meningeal nociceptors
 - Vasodilation
 - Neurogenic inflammation

CGRP Can Activate CGRP and AMY₁ Receptors^{1,2}

- The CGRP receptor is made up of CLR and RAMP₁ subunits
- It binds with high affinity to CGRP and has important roles in migraine
- CGRP can also activate the amylin 1 (AMY₁) receptor with an affinity that is similar to amylin
 - AMY₁ is made up of RAMP₁ and CTR subunits
 - The role of the AMY₁ receptor in migraine is not completely understood

CLR=calcitonin receptor-like receptor; CTR=calcitonin receptor; RAMP₁=receptor activity modifying protein 1.

References: 1. Walker CS, Hay DL. *Br J Pharmacol.* 2013;170(7):1293-1307. 2. Walker CS, Eftekhari S, Bower RL, et al. *Ann Clin Transl Neurol.* 2015;2(6):595-608.

© 2019 Eli Lilly and Company.

CGRP in Migraine

- Increased CGRP levels correlate with onset and pain intensity in migraine attacks^{1,2}
- Infusion of CGRP has been shown to induce migrainelike attacks in susceptible patients^{1,3,4}

References: 1. Arulmani U, Maassenvandenbrink A, Villalon CM, et al. *Eur J Pharmacol.* 2004;500(1-3):315-330. 2. Juhasz G, Zsombok T, Modos EA, et al. *Pain.* 2003;106(3):461-470. 3. Hansen JM, Hauge AW, Olesen J, et al. *Cephalalgia.* 2010;30(10):1179-1186. 4. Lassen LH, Haderslev PA, Jacobsen VB, et al. *Cephalalgia.* 2002;22(1):54-61. 5. Goadsby PJ, Edvinsson L. *Brain.* 1994;117(pt 3):427-434. 6. Edvinsson L. *Br J Clin Pharmacol.* 2015:80(2):193-199. 7. Peroutka SJ. *BioDrugs.* 2014;28(3):237-244.

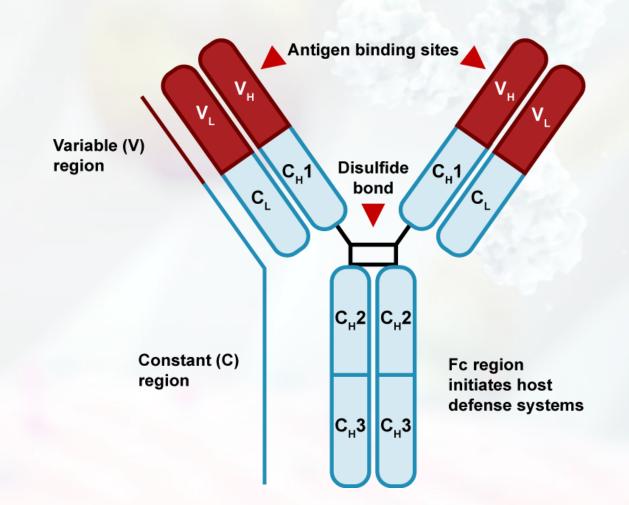
- Triptans, medications commonly used for the acute treatment of migraine, reduce CGRP levels^{1,5}
- Blocking the CGRP ligand or receptor reduces migraine symptoms^{6,7}

Understanding Galcanezumab

What Is Galcanezumab?

- Galcanezumab is an IgG4 monoclonal antibody
- Galcanezumab is indicated for the preventive treatment of migraine in adults

Galcanezumab is a humanized IgG4 monoclonal antibody

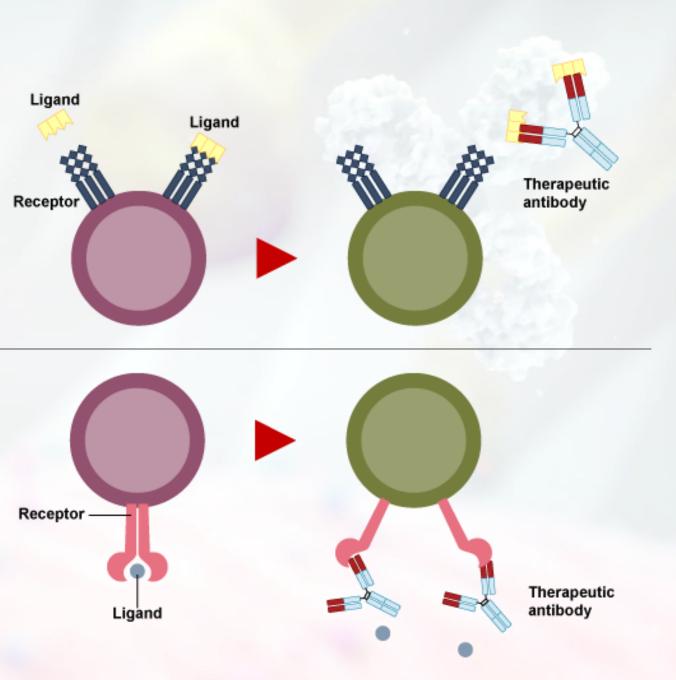

CGRP

Understanding Monoclonal Antibodies

- Monoclonal antibodies

 (immunoglobulins) are large
 proteins produced by the immune
 system to counteract foreign
 substances (antigens) in the body¹⁻³
- Like galcanezumab, antibodies can be developed to target specific antigens for therapeutic purposes^{4,5}
- There are approximately 5 classes of immunoglobulins (IgA, IgD, IgE, IgG, IgM)⁶

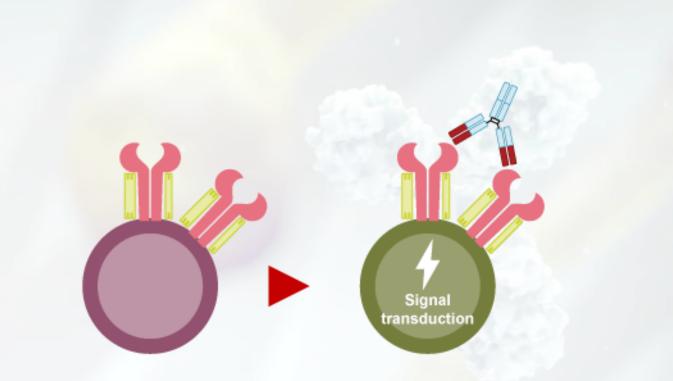
References: 1. Voynov V, Chennamsetty N, Kayser V, et al. *MAbs*. 2009;1(6):580-582. 2. Hansel TT, Kropshofer H, Singer T, et al. *Nat Rev Drug Discov*. 2010;9(4):325-338. 3. Llewelyn MB, Hawkins RE, Russell SJ. *BMJ*. 1992;305(6864):1269-1272. 4. Data on File. Eli Lilly and Company and/or its subsidiaries. 5. Chames P, Van Regenmortel M, Weiss E, et al. *Br J Pharmacol*. 2009;157(2):220-233. 6. Brekke OH, Sandlie I. *Nat Rev Drug Discov*. 2003;2(1):52-62. Erratum in 2(3):240.


Mechanisms of Action for Therapeutic Monoclonal Antibodies

Ligand Blockade:

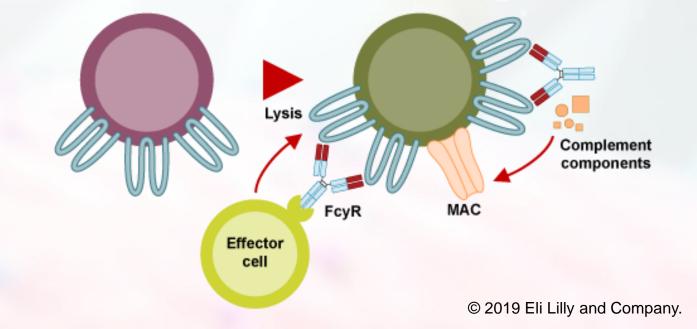
Antibodies or antibody fragments can prevent ligands from activating all of their receptors

Antibodies bind the receptor and block binding of the ligand to the receptor



Reference: Chan AC, Carter PJ. Nat Rev Immunol. 2010;10(5):301-316.

Mechanisms of Action for Therapeutic Monoclonal Antibodies (Cont'd)


Signaling Induction:

Antibodies bind receptor complexes and induce receptor-mediated signaling, altering cell functions and differentiation

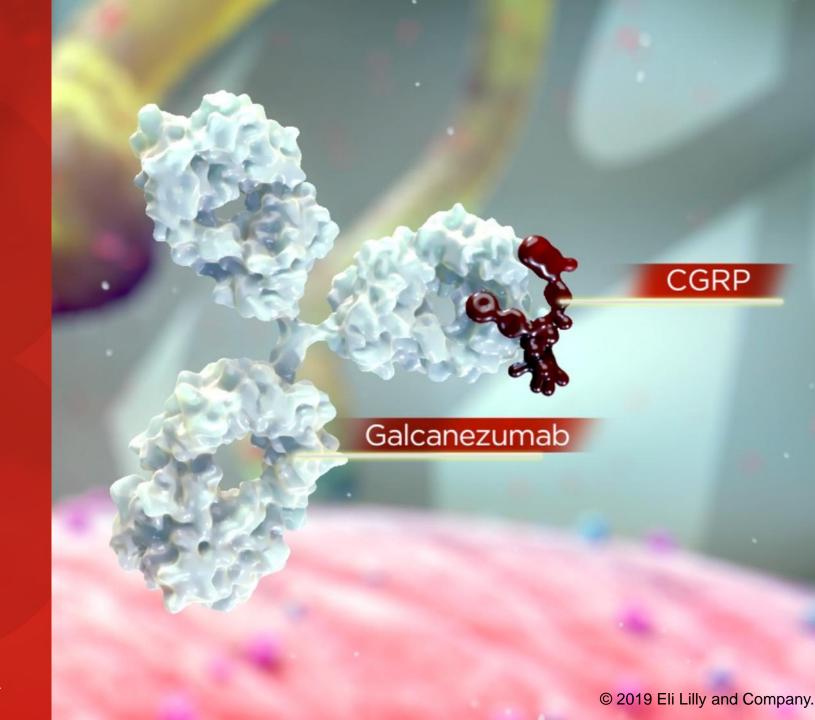
Depletion:

Antibodies binding to cell surface receptors can result in depletion of antigen-bearing cells through complement-mediated or FcyR-mediated lysis

IgG Immunoglobulins

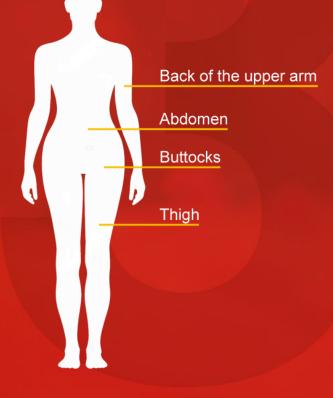
- IgG is the most common Ig class used as the basis for therapeutic antibodies and is subdivided into 4 subclasses¹⁻³
- Galcanezumab is an IgG4 monoclonal antibody, and it is expected that it will not induce an innate immune complement reaction⁴⁻⁶

Property	lgG1	lgG2	lgG3	lgG4
Total IgG, ⁶⁻⁸ %	60	40	4	4
Serum half-life, days	21	21	21-7	21
Classical complement fixation ^a	+++	+	+++	-
Binding affinity for Fc receptors (ADCC) ^b	+++	+	+++	+
Anti-protein antibodies ^c	++	+	++	+
Anti-polysaccharide antibodies (encapsulated bacterial pathogens) ^c	+	+++	+	+
Age when adult concentrations acquired, years	≥5		Adolescence	


References: 1. Buckley RH. *Curr Allergy Asthma Rep.* 2002;2(5):356-360. 2. Foltz IN, Karow M, Wasserman SM. *Circulation*. 2013;127(22):2222-2230. 3. Brekke OH, Sandlie I. *Nat Rev Drug Discov*. 2003;2(1):52-62. Erratum in 2(3):240. 4. Kielbasa W, Helton DL. *Cephalalgia*. [published online ahead of print, March 27, 2019]. doi: 10.1177/0333102419840780. 5. Data on File. Eli Lilly and Company and/or its subsidiaries. 6. Vidarsson G, Dekkers G, Rispens T. *Front Immunol*. 2014;5:520. 7. Valenzuela NM, Hickey MJ, Reed EF. *Front Immunol*. 2016;7:433. 8. Agarwal S, Cunningham-Rundles C. *Ann Allergy Asthma Immunol*. 2007;99(3):281-283. ^aBinding affinity for C1q: +++ (highest), - (no binding).

 b ++ (higher), + (lower).

^cAntibodies to polysaccharide antigens are largely but not exclusively of the IgG2 subclass, whereas antibodies to protein and viral antigens occur dominantly in the IgG1 and IgG3 subclasses.


Mechanism of Action of Galcanezumab

- Designed to target CGRP with
 - High affinity ($K_D = 31 \text{ pM}$)
 - High specificity (>10,000-fold versus related peptides)
- Binds CGRP and prevents its biological activity without blocking the CGRP receptor
- Thought to act peripherally in structures involved in migraine headache pathogenesis, including the trigeminal ganglia

Dosing and Administration of Galcanezumab for Migraine

Galcanezumab injection Subcutaneous injection sites can include:

• After a loading dose, therapeutic steady-state concentrations of galcanezumab are achieved

Approved dosing

Initial loading dose:	Recommended dose:	
240 mg subcutaneous injection	120 mg/monthly subcutaneous injection	

 Galcanezumab can be self-administered once monthly by subcutaneous injection

Pharmacokinetics (PK) of Galcanezumab

Refe subs

Absorption*	Following a 240 mg loading dose, the maximum serum concentration (C_{max}) was ~30 μ g/mL (27% coefficient of variation [CV]). ¹		
	Monthly doses of 120 mg or 240 mg achieved a steady-state C_{max} ($C_{max,ss}$) of approximately 28 µg/mL (35% CV) or 54 µg/mL (31% CV), respectively. ¹		
	Injection site location did not significantly influence the absorption of galcanezumab. ¹		
Distribution*	The apparent volume of distribution (V/F) of galcanezumab was 7.3 L.1		
Metabolism	As a humanized IgG4 monoclonal antibody, galcanezumab is expected to be degraded into small peptides and amino acids via catabolic pathways in the same manner as endogenous IgG. ¹ Liver enzymes (CYP450 isozymes) are not involved in IgG metabolism. ²		
Elimination*	The apparent clearance (CL/F) of galcanezumab was approximately 0.008 L/h, and the half-life of galcanezumab was 27 days. ¹		
*Based on population PK analysis.			
rences: 1. Data on File. Eli Lilly and Company and/or its idiaries. 2. Lobo ED, Hansen RJ, Balthasar JP. <i>J Pharm Sci.</i> ;93(11):2645-2668.			

Pharmacodynamics of Galcanezumab

- CGRP is a key mediator of capsaicin-induced dermal blood flow
- Single doses of galcanezumab (75, 200, or 600 mg) resulted in attenuation of capsaicin-induced dermal blood flow by Day 3
- Galcanezumab at 150 mg every 2 weeks for 6 weeks (4 total doses) resulted in an inhibition of capsaicininduced dermal blood flow for at least 134 days after the last dose was given

• Galcanezumab is indicated for the preventive treatment of migraine in adults

- As an IgG4 antibody, it is expected that it will
 - Not induce an innate immune complement reaction
 - Degrade into small peptides in the same manner as endogenous IgG, without inducing an immune response
- By targeting and sequestering CGRP, a key neuropeptide in migraine, galcanezumab may prevent underlying pathological processes associated with migraine and prevent migraine attacks

Summary

Agarwal S, Cunningham-Rundles C. Assessment and clinical interpretation of reduced IgG values. *Ann Allergy Asthma Immunol.* 2007;99(3):281-283.

Arulmani U, Maassenvandenbrink A, Villalón CM, et al. Calcitonin gene-related peptide and its role in migraine pathophysiology. *Eur J Pharmacol.* 2004;500(1-3):315-330.

Blumenfeld AM, Bloudek LM, Becker WJ, et al. Patterns of use and reasons for discontinuation of prophylactic medications for episodic migraine and chronic migraine: results from the second international burden of migraine study (IBMS-II). *Headache*. 2013;53(4):644-655.

Brekke OH, Sandlie I. Therapeutic antibodies for human diseases at the dawn of the twentyfirst century. *Nat Rev Drug Discov*. 2003;2(1):52-62. Erratum in 2(3):240.

Buckley RH. Immunoglobulin G subclass deficiency: fact or fancy? *Curr Allergy Asthma Rep.* 2002;2(5):356-360.

Chames P, Van Regenmortel M, Weiss E, et al. Therapeutic antibodies: successes, limitations and hopes for the future. *Br J Pharmacol*. 2009;157(2):220-233.

Chan AC, Carter PJ. Therapeutic antibodies for autoimmunity and inflammation. *Nat Rev Immunol*. 2010;10(5):301-316.

D'Amico D, Solari A, Usai S, et al; Progetto Cefalee Lombardia Group. Improvement in quality of life and activity limitations in migraine patients after prophylaxis. A prospective longitudinal multicentre study. *Cephalalgia*. 2006;26(6):691-696.

Data on File. Eli Lilly and Company and/or its subsidiaries.

Diamond S, Bigal ME, Silberstein S, et al. Patterns of diagnosis and acute and preventive treatment for migraine in the United States: results from the American Migraine Prevalence and Prevention study. *Headache*. 2007;47(3):355-363.

References

Durham PL. Calcitonin gene-related peptide (CGRP) and migraine. *Headache*. 2006;46 (suppl 1):S3-8.

Edvinsson L. CGRP receptor antagonists and antibodies against CGRP and its receptor in migraine treatment. *Br J Clin Pharmacol.* 2015;80(2):193-199.

Eftekhari S, Salvatore CA, Calamari A, et al. Differential distribution of calcitonin gene-related peptide and its receptor components in the human trigeminal ganglion. *Neuroscience*. 2010;169(2):683-696.

Foltz IN, Karow M, Wasserman SM. Evolution and emergence of therapeutic monoclonal antibodies: what cardiologists need to know. *Circulation*. 2013;127(22):2222-2230.

GBD 2016 Risk Factors Collaborators. Global, regional, and national comparative risk assessment of 84 behavioral, environmental and occupational, and metabolic risks or clusters of risks, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. *Lancet.* 2017;390(10100):1345-1422.

Goadsby PJ, Edvinsson L. Human in vivo evidence for trigeminovascular activation in cluster headache. Neuropeptide changes and effects of acute attacks therapies. *Brain.* 1994;117 (pt 3):427-434.

Goadsby PJ, Holland PR, Martins-Oliveira M, et al. Pathophysiology of migraine: a disorder of sensory processing. *Physiol Rev*. 2017;97(2):553-622.

Hansel TT, Kropshofer H, Singer T, et al. The safety and side effects of monoclonal antibodies. *Nat Rev Drug Discov*. 2010;9(4):325-338.

Hansen JM, Hauge AW, Olesen J, et al. Calcitonin gene-related peptide triggers migraine-like attacks in patients with migraine with aura. *Cephalalgia*. 2010;30(10):1179-1186.

References (Cont'd)

Headache Classification Committee of the International Headache Society (IHS). The International Classification of Headache Disorders, 3rd edition (beta version). *Cephalalgia*. 2018; 38(1):1-211.

Juhasz G, Zsombok T, Modos EA, et al. NO-induced migraine attack: strong increase in plasma calcitonin gene-related peptide (CGRP) concentration and negative correlation with platelet serotonin release. *Pain*. 2003;106(3):461-470.

Kielbasa W, Helton DL. A new era for migraine: Pharmacokinetic and pharmacodynamic insights into monoclonal antibodies with a focus on galcanezumab, an anti-CGRP antibody. *Cephalalgia*. [published online ahead of print, March 27, 2019]. doi: 10.1177/0333102419840780.

Landy SH, Runken MC, Bell CF, et al. Assessing the impact of migraine onset on work productivity. *J Occup Environ Med.* 2011;53(1):74-81.

Lassen LH, Haderslev PA, Jacobsen VB, et al. CGRP may play a causative role in migraine. *Cephalalgia*. 2002;22(1):54-61.

Lipton RB, Bigal ME, Diamond M, et al. AMPP Advisory Group. Migraine prevalence, disease burden, and the need for preventive therapy. *Neurology*. 2007;68(5):343-349.

Llewelyn MB, Hawkins RE, Russell SJ. Discovery of antibodies. *BMJ*. 1992;305(6864):1269-1272.

Lobo ED, Hansen RJ, Balthasar JP. Antibody pharmacokinetics and pharmacodynamics. *J Pharm Sci.* 2004;93(11):2645-2668.

Peroutka SJ. Calcitonin gene-related peptide targeted immunotherapy for migraine: progress and challenges in treating headache. *BioDrugs*. 2014;28(3):237-244.

References (Cont'd)

Pike J, Mutebi A, Shah N, et al. Factors associated with a history of failure and switching migraine prophylaxis treatment: an analysis of clinical practice data from the United States, Germany, France, and Japan. *Value Health.* 2016;19(3):A1-A23.

Russo AF. Calcitonin gene-related peptide (CGRP): a new target for migraine. *Annu Rev Pharmacol Toxicol.* 2015;55:533-552.

Steiner TJ, Stovner LJ, Birbeck GL. Migraine: the seventh disabler. *J Headache Pain*. 2013;14(1):1.

Valenzuela NM, Hickey MJ, Reed EF. Antibody subclass repertoire and graft outcome following solid organ transplantation. *Front Immunol.* 2016;7:433.

Vidarsson G, Dekkers G, Rispens T. IgG subclasses and allotypes: from structure to effector functions. *Front Immunol.* 2014;5:520.

Voynov V, Chennamsetty N, Kayser V, Helk B, Trout BL. Predictive tools for stabilization of therapeutic proteins. *Mabs.* 2009;1(6):580-582.

Walker CS, Eftekhari S, Bower RL, et al. A second trigeminal CGRP receptor: function and expression of the AMY1 receptor. *Ann Clin Transl Neurol*. 2015;2(6):595-608.

Walker CS, Hay DL. CGRP in the trigeminovascular system: a role for CGRP, adrenomedullin and amylin receptors? *Br J Pharmacol*. 2013;170(7):1293-1307.

Woldeamanuel YW, Cowan RP. Migraine affects 1 in 10 people worldwide featuring recent rise: a systematic review and meta-analysis of community-based studies involving 6 million participants. *J Neurol Sci.* 2017;372:307-315.

World Health Organization. Atlas of headache disorders and resources in the world 2011. http://www.who.int/mental_health/management/who_atlas_ headache_disorders.pdf. Accessed May 21, 2017.

References (Cont'd)

Exploring Cluster Headache

- **1. Cluster Headache: Burden of Disease**
- 2. CGRP and Episodic Cluster Headache
- 3. Understanding Galcanezumab

Objectives

Cluster Headache: Burden of Disease

What Is Cluster Headache?

References: 1. Headache Classification Committee of the International Headache Society (IHS). *Cephalalgia*. 2018;38(1):1-211. 2. Fischera M, Marziniak M, Gralow I, et al. *Cephalalgia*. 2008;28(6):614-618. 3. Robbins MS, Starling AJ, Pringsheim TM, et al. *Headache*. 2016;56(7):1093-1106. 4. Beck E, Sieber WJ, Trejo R. *Am Fam Physician*. 2005;71(4):717-724. 5. Leroux E, Ducros A. *Orphanet J Rare Dis*. 2008;3:1-11.

- Cluster headache is a primary headache disorder¹
 - Occurs more commonly in men than women
 - Most common age at onset is between **20** to **40** years

• Lifetime prevalence of approximately **0.12** percent^{2,3}

- Approximately 85 to 90 percent of patients have episodic cluster headache¹
- Variation in these numbers is not expected worldwide ^{2,3}
- Often described as excruciatingly painful^{4,5}

The pain is like having a red-hot knife stabbing you behind the eye

ICHD-3 Diagnostic Criteria: Cluster Headache

Reference: Headache Classification Committee of the International Headache Society (IHS). *Cephalalgia*. 2018;38(1):1-211.

- A. At least five attacks fulfilling criteria B–D
- **B.** Severe or very severe unilateral orbital, supraorbital and/or temporal pain lasting 15–180 minutes (when untreated)
- **C.** Either or both of the following:
 - 1. at least one of the following symptoms or signs, ipsilateral to the headache:
 - conjunctival injection and/or lacrimation
 - nasal congestion and/or rhinorrhea
 - eyelid edema
 - forehead and facial sweating
 - miosis and/or ptosis
 - 2. a sense of restlessness or agitation
- **D.** Occurring with a frequency between one every other day and eight per day
- E. Not better accounted for by another ICHD-3 diagnosis

Defining Episodic Cluster Headache

Reference: Headache Classification Committee of the International Headache Society (IHS). *Cephalalgia*. 2018;38(1):1-211.

- Attacks fulfill ICHD-3 criteria for cluster headache
- At least two cluster headache periods lasting from 7 days to 1 year (when untreated) and separated by pain-free remission periods of 3 months or more
- Cluster headache periods usually last between 2 weeks to 3 months

© 2019 Eli Lilly and Company.

Commonly Underdiagnosed and Undertreated

References: 1. Buture A, Ahmed F, Dikomitis L, et al. *Neurol Sci.* 2018;40(1):25-39. 2. Rozen TD, Fishman RS. *Headache*. 2012;52:99-113. 3. Voiticovschi-losob C, Allena M, De Cillis I, et al. *J Headache Pain*. 2014;15(1):56. 4. Vollesen AL, Benemei S, Cortese F, et al. *J Headache Pain*. 2018;19:2-15. 5. Headache Classification Committee of the International Headache Society (IHS). *Cephalalgia*. 2018;38(1):1-211.

- Worldwide, the average delay in diagnosis of cluster headache can be years¹⁻³
- Patients with cluster headache reported visiting different clinicians and receiving multiple incorrect diagnoses prior to being correctly diagnosed^{1,2}
- Clinically, cluster headache can resemble migraine, trigeminal neuralgia, and sinusitis, among other diseases^{1,4,5}
- Based on a 2014 European survey, following a cluster headache diagnosis:³

Approximately

25%

26%

of patients received either no or nonrecommended acute treatment options

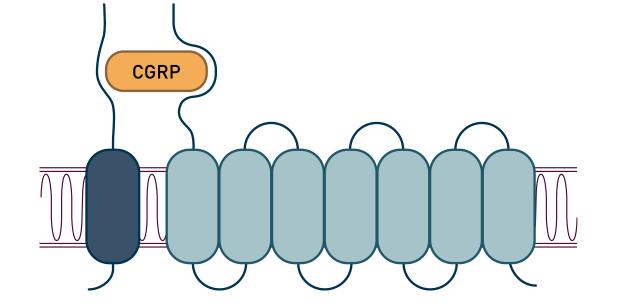
Approximately

of patients received either no or nonrecommended preventive treatments

© 2019 Eli Lilly and Company.

CGRP and Episodic Cluster Headache

What Is CGRP?



References: 1. Tfelt-Hansen P, Le H. *J Headache Pain*. 2009;10(3):137-143. 2. Eftekhari S, Salvatore CA, Calamari A, et al. *Neuroscience*. 2010;169(2):683-696. 3. Buture A, Gooriah R, Nimeri R, et al. *Anesth Pain Med*. 2016;6(3):e35190. 4. Alstadhaug KB, Ofte HK. *Tidsskr Nor Laegeforen*. 2015;135(15):1361-1364.

- Calcitonin gene-related peptide, or CGRP, is a small (~37 amino acid) neuropeptide with a wide distribution in both peripheral and central nervous systems¹
- CGRP is one of the most abundant neuropeptides in the trigeminovascular system¹
 - CGRP is expressed in approximately 50% of neurons in the trigeminal ganglia²
- Activation of the trigeminovascular system occurs during cluster attacks, causing the release of neuropeptides including CGRP and leads to:^{3,4}
 - Activation of meningeal nociceptors
 - Vasodilation
 - Neurogenic inflammation

CGRP Activates the CGRP Receptor

- CGRP binds and activates the CGRP receptor with a high affinity
- The CGRP receptor is found on nerves and blood vessels throughout the trigeminovascular system

CGRP receptor

Reference: Walker CS, Hay DL. Br J Pharmacol. 2013;170(7):1293-1307.

CGRP and Cluster Headache

References: 1. Fanciullacci M, Alessandri M, Figini M, et al. *Pain*. 1995;60(2):119-123. 2. Goadsby PJ, Edvinsson L. *Brain*. 1994;117:427-434. 3. Vollesen ALH, Snoer A, Beske RP, et al. *JAMA Neurol*. 2018;75(10):1187-1197.

- CGRP has been shown to be increased during cluster headache attacks in patients with episodic cluster headache^{1,2}
 - CGRP levels return to normal following the cessation of an attack
- In a recent study, infusion of CGRP precipitated attacks in 8 out of 9 individuals during their active period of episodic cluster headache³
- Triptans, medications demonstrated effective for the acute treatment of cluster headache, were shown to reduce CGRP levels^{1,2}

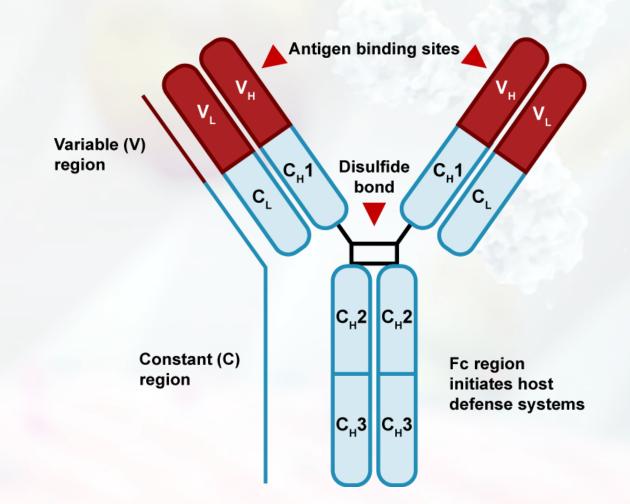
Understanding Galcanezumab

What Is Galcanezumab?

• Galcanezumab is indicated in adults for the treatment of episodic cluster headache

Galcanezumab is a humanized IgG4 monoclonal antibody

© 2019 Eli Lilly and Company.

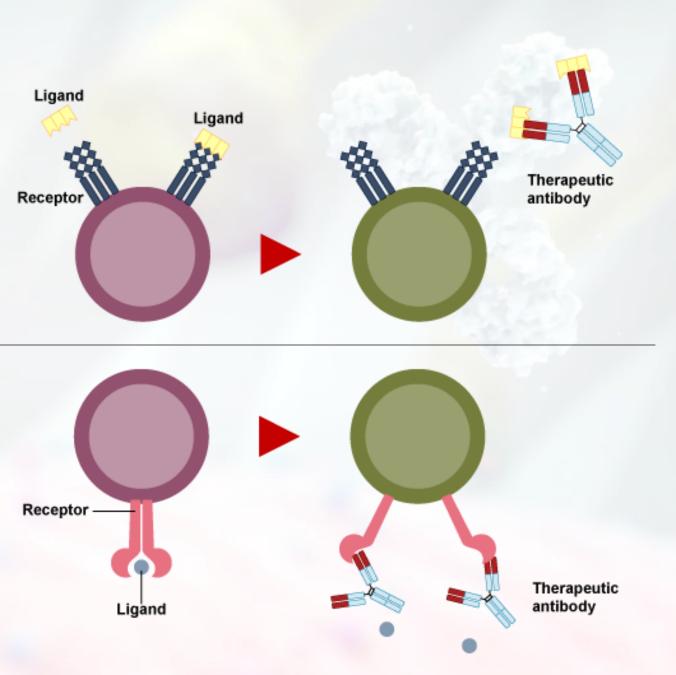

CGRP

Understanding Monoclonal Antibodies

- Monoclonal antibodies

 (immunoglobulins) are large
 proteins produced by the immune
 system to counteract foreign
 substances (antigens) in the body¹⁻³
- Like galcanezumab, antibodies can be developed to target specific antigens for therapeutic purposes^{4,5}
- There are approximately 5 classes of immunoglobulins (IgA, IgD, IgE, IgG, IgM)⁶

References: 1. Voynov V, Chennamsetty N, Kayser V, et al. *MAbs*. 2009;1(6):580-582. 2. Hansel TT, Kropshofer H, Singer T, et al. *Nat Rev Drug Discov*. 2010;9(4):325-338. 3. Llewelyn MB, Hawkins RE, Russell SJ. *BMJ*. 1992;305(6864):1269-1272. 4. Data on File. Eli Lilly and Company and/or its subsidiaries. 5. Chames P, Van Regenmortel M, Weiss E, et al. *Br J Pharmacol*. 2009;157(2):220-233. 6. Brekke OH, Sandlie I. *Nat Rev Drug Discov*. 2003;2(1):52-62. Erratum in 2(3):240.

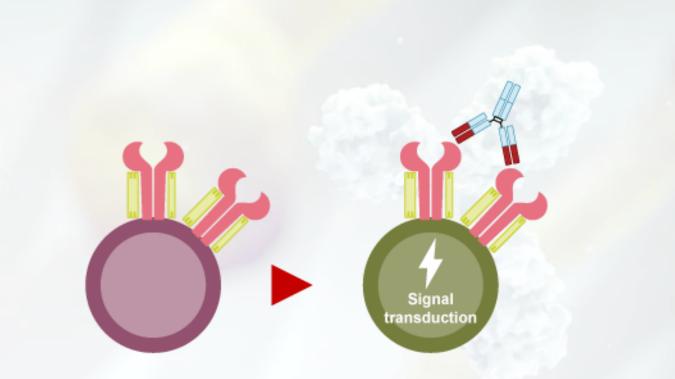

Mechanisms of Action for Therapeutic Monoclonal Antibodies

Ligand Blockade:

Antibodies or antibody fragments can prevent ligands from activating all of their receptors

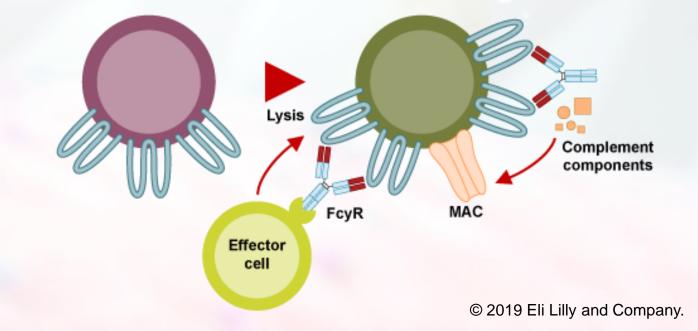
Receptor Blockade:

Antibodies bind the receptor and block binding of the ligand to the receptor



© 2019 Eli Lilly and Company.

Mechanisms of Action for Therapeutic Monoclonal Antibodies (Cont'd)


Signaling Induction:

Antibodies bind receptor complexes and induce receptor-mediated signaling, altering cell functions and differentiation

Depletion:

Antibodies binding to cell surface receptors can result in depletion of antigen-bearing cells through complement-mediated or FcyR-mediated lysis

IgG Immunoglobulins

- IgG is the most common Ig class used as the basis for therapeutic antibodies and is subdivided into 4 subclasses¹⁻³
- Galcanezumab is an IgG4 monoclonal antibody, and it is expected that it will not induce an innate immune complement reaction⁴⁻⁶

Property	lgG1	lgG2	lgG3	lgG4
Total IgG, ⁶⁻⁸ %	60	40	4	4
Serum half-life, days	21	21	21-7	21
Classical complement fixation ^a	+++	+	+++	-
Binding affinity for Fc receptors (ADCC) ^b	+++	+	+++	+
Anti-protein antibodies ^c	++	+	++	+
Anti-polysaccharide antibodies (encapsulated bacterial pathogens) ^c	+	+++	+	+
Age when adult concentrations acquired, years	≥5		Adolescence	

References: 1. Buckley RH. *Curr Allergy Asthma Rep.* 2002;2(5):356-360. 2. Foltz IN, Karow M, Wasserman SM. *Circulation*. 2013;127(22):2222-2230. 3. Brekke OH, Sandlie I. *Nat Rev Drug Discov*. 2003;2(1):52-62. Erratum in 2(3):240. 4. Kielbasa W, Helton DL. *Cephalalgia*. [published online ahead of print, March 27, 2019]. doi: 10.1177/0333102419840780. 5. Data on File. Eli Lilly and Company and/or its subsidiaries. 6. Vidarsson G, Dekkers G, Rispens T. *Front Immunol*. 2014;5:520. 7. Valenzuela NM, Hickey MJ, Reed EF. *Front Immunol*. 2016;7:433. 8. Agarwal S, Cunningham-Rundles C. *Ann Allergy Asthma Immunol*. 2007;99(3):281-283. ^aBinding affinity for C1q: +++ (highest), - (no binding).

^b++ (higher), + (lower).

^cAntibodies to polysaccharide antigens are largely but not exclusively of the IgG2 subclass, whereas antibodies to protein and viral antigens occur dominantly in the IgG1 and IgG3 subclasses.

Mechanism of Action of Galcanezumab

- Designed to target CGRP with
 - High affinity ($K_D = 31 \text{ pM}$)
 - High specificity (>10,000-fold versus related peptides)
- Binds CGRP and prevents its biological activity without blocking the CGRP receptor
- Thought to act peripherally in structures involved in cluster headache pathogenesis, including the trigeminal ganglia

Galcanezumab

Reference: Data on File. Eli Lilly and Company and/or its subsidiaries.

© 2019 Eli Lilly and Company.

Pharmacokinetics (PK) of Galcanezumab

Absorption*	Following a 240 mg loading dose, the maximum serum concentration (C_{max}) was ~3 μ g/mL (27% coefficient of variation [CV]). ¹		
	Monthly doses of 120 mg or 240 mg achieved a steady-state C_{max} ($C_{max,ss}$) of approximately 28 µg/mL (35% CV) or 54 µg/mL (31% CV), respectively. ¹		
	Injection site location did not significantly influence the absorption of galcanezumab.		
Distribution*	The apparent volume of distribution (V/F) of galcanezumab was 7.3 L.1		
Metabolism	As a humanized IgG4 monoclonal antibody, galcanezumab is expected to be degraded into small peptides and amino acids via catabolic pathways in the same manner as endogenous IgG. ¹ Liver enzymes (CYP450 isozymes) are not involved in IgG metabolism. ²		
Elimination*	The apparent clearance (CL/F) of galcanezumab was approximately 0.008 L/h, and the half-life of galcanezumab was 27 days. ¹		
*Based on population PK analysis.			
ences: 1. Data on File. Eli Lilly and Company and/or its diaries. 2. Lobo ED, Hansen RJ, Balthasar JP. <i>J Pharm Sci</i> . 93(11):2645-2668.			

Galcanezumab Metabolism

References: 1. Data on File. Eli Lilly and Company and/or its subsidiaries. 2. Lobo ED, Hansen RJ, Balthasar JP. *J Pharm Sci.* 2004;93(11):2645-2668.

- As a humanized IgG4 monoclonal antibody, galcanezumab is expected to be degraded into small peptides and amino acids via catabolic pathways in the same manner as endogenous IgG¹
- Liver enzymes (CYP450 isozymes) are not involved in IgG metabolism²

Dosing and Administration of Galcanezumab for Episodic Cluster Headache

Injection sites Back of the upper arm Abdomen **Buttocks** Thigh

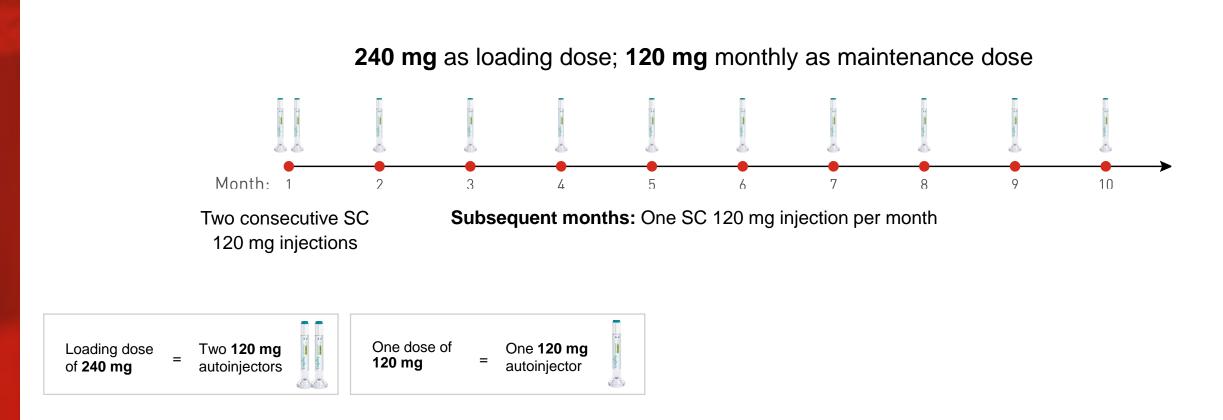
Reference: Data on File. Eli Lilly and Company and/or its subsidiaries.

- The recommended dosage of galcanezumab is 300 mg at the onset of the cluster period, and then monthly until the end of the cluster period
- The 300 mg dose is administered by three consecutive subcutaneous injections of 100 mg prefilled syringes
- Galcanezumab may be self-injected

Dosing Rationale for Galcanezumab: Episodic Cluster Headache

References: 1. Dodick DW, Goadsby PJ, Spierings EL, et al. *Lancet Neurol.* 2014;13(9):885-892. 2. Data on File. Eli Lilly and Company and/or its subsidiaries.

- The 300 mg total monthly dose was selected because it demonstrated efficacy in a prior phase 2 study where galcanezumab was administered subcutaneously as 150 mg every 2 weeks¹
 - This was the only efficacy study conducted prior to initiating the cluster headache phase 3 study¹
- Galcanezumab 300 mg once monthly was predicted to provide the same monthly galcanezumab exposure and target engagement as 150 mg every 2 weeks based on:²
 - Area under the galcanezumab concentration time curve
 - Plasma CGRP concentrations as a marker of indicating galcanezumab target engagement


Formulation Rationale: 300 mg Dose of Galcanezumab for Episodic Cluster Headache

- Delivering a 300 mg dose via subcutaneous administration at an injection volume of 1 mL would require a 300 mg/mL galcanezumab formulation, which is currently not available¹
- Based on the characteristics of monoclonal antibodies, solubility of the drug product can pose a technical challenge. Therefore, the 100 mg/mL galcanezumab formulation was developed, which ensures the required stability of the formulation at the recommended storage temperature over the shelf life of the product¹
- The 120 mg/mL solution was developed after the initiation of the cluster studies and was subsequently carried forward for the migraine studies¹

Galcanezumab Dosing:

Migraine

Recommended dosing for migraine

mg=milligram; SC=subcutaneous.

Reference: Data on File. Eli Lilly and Company and/or its subsidiaries.

This represents a hypothetical patient.

Galcanezumab Dosing:

Episodic Cluster Headache

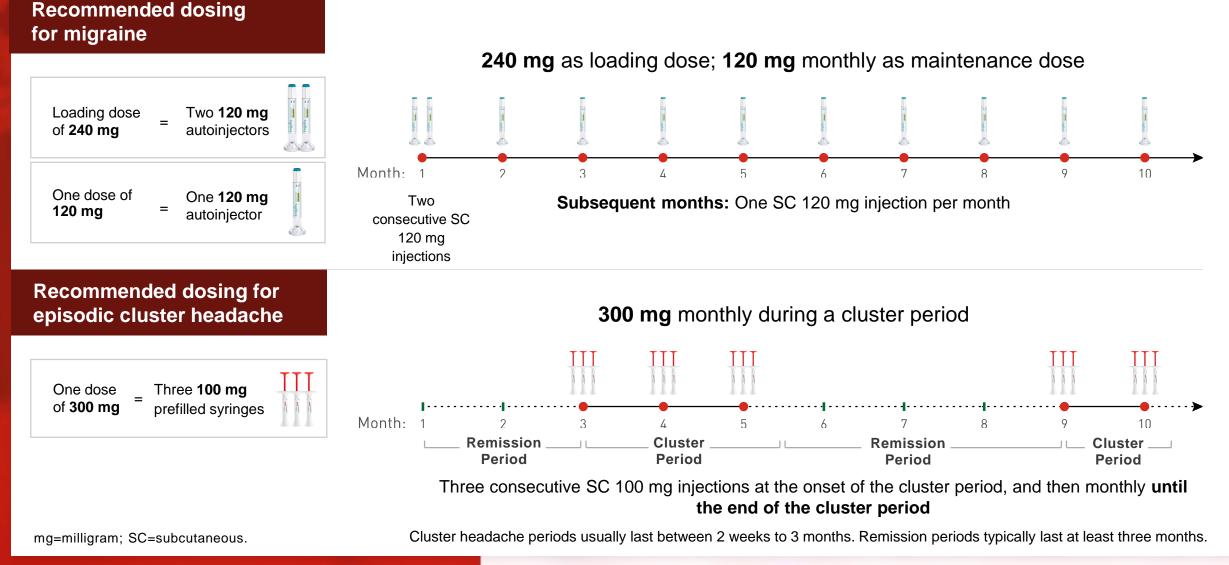
Recommended dosing for episodic cluster headache

300 mg monthly during a cluster period Month: 8 2 4 5 7 9 10 Remission Cluster Remission Cluster Period Period Period Period

Three consecutive SC 100 mg injections at the onset of the cluster period, and then monthly **until the end of the cluster period**

One dose of **300 mg** = Three **100 mg** prefilled syringes

mg=milligram; SC=subcutaneous.


Cluster headache periods usually last between 2 weeks to 3 months. Remission periods typically last at least three months.

This represents a hypothetical patient.

Galcanezumab Dosing:

Migraine vs Episodic Cluster Headache

This represents a hypothetical patient.

Galcanezumab is indicated in adults for the treatment of episodic cluster headache

- As an IgG4 antibody, it is expected that it will
 - Not induce an innate immune complement reaction
 - Degrade into small peptides in the same manner as endogenous IgG, without inducing an immune response
- By targeting and sequestering CGRP, a key neuropeptide in episodic cluster headache, galcanezumab may prevent underlying pathological processes associated with cluster headache and prevent cluster headache attacks

Summary

Agarwal S, Cunningham-Rundles C. Assessment and clinical interpretation of reduced IgG values. *Ann Allergy Asthma Immunol.* 2007;99(3):281-283.

Alstadhaug KB, Ofte HK. Cluster headache. Tidsskr Nor Laegeforen. 2015;135(15):1361-1364.

Beck E, Sieber WJ, Trejo R. Management of cluster headache. *Am Fam Physician*. 2005;71(4):717-724.

Brekke OH, Sandlie I. Therapeutic antibodies for human diseases at the dawn of the twenty-first century. *Nat Rev Drug Discov.* 2003;2(1):52-62. Erratum in 2(3):240.

Buckley RH. Immunoglobulin G subclass deficiency: fact or fancy? *Curr Allergy Asthma Rep.* 2002;2(5):356-360.

Buture A, Ahmed F, Dikomitis L, et al. Systematic literature review on the delays in the diagnosis and misdiagnosis of cluster headache. *Neurol Sci.* 2018;40(1):25-39.

Buture A, Gooriah R, Nimeri R, et al. Current understanding on pain mechanism in migraine and cluster headache. *Anesth Pain Med.* 2016;6(3):e35190.

Chames P, Van Regenmortel M, Weiss E, et al. Therapeutic antibodies: successes, limitations and hopes for the future. *Br J Pharmacol.* 2009;157(2):220-233.

Chan AC, Carter PJ. Therapeutic antibodies for autoimmunity and inflammation. *Nat Rev Immunol.* 2010;10(5):301-316.

Data on File. Eli Lilly and Company and/or one of its subsidiaries.

Dodick DW, Goadsby PJ, Spierings EL, et al. Safety and efficacy of LY2951742, a monoclonal antibody to calcitonin gene-related peptide, for the prevention of migraine: a phase 2, randomised, double-blind, placebo-controlled study. *Lancet Neurol.* 2014;13(9):885-892.

References

Eftekhari S, Salvatore CA, Calamari A, et al. Differential distribution of calcitonin gene-related peptide and its receptor components in the human trigeminal ganglion. *Neuroscience*. 2010;169(2):683-696.

Fanciullacci M, Alessandri M, Figini M, et al. Increase in plasma calcitonin gene-related peptide from the extracerebral circulation during nitroglycerin-induced cluster headache attack. *Pain*. 1995;60(2):119-123.

Fischera M, Marziniak M, Gralow I, et al. The incidence and prevalence of cluster headache: a meta-analysis of population-based studies. *Cephalalgia*. 2008;28(6):614-618.

Foltz IN, Karow M, Wasserman SM. Evolution and emergence of therapeutic monoclonal antibodies: what cardiologists need to know. *Circulation*. 2013;127(22):2222-2230.

Goadsby PJ, Edvinsson L. Human in vivo evidence for trigeminovascular activation in cluster headache. Neuropeptide changes and effects of acute attacks therapies. *Brain.* 1994;117:427-434.

Hansel TT, Kropshofer H, Singer T, et al. The safety and side effects of monoclonal antibodies. *Nat Rev Drug Discov.* 2010;9(4):325-338.

Headache Classification Committee of the International Headache Society (IHS). The International Classification of Headache Disorders, 3rd edition. *Cephalalgia*. 2018;38(1):1-211.

Kielbasa W, Helton DL. A new era for migraine: Pharmacokinetic and pharmacodynamic insights into monoclonal antibodies with a focus on galcanezumab, an anti-CGRP antibody. *Cephalalgia*. [published online ahead of print, March 27, 2019]. doi: 10.1177/0333102419840780.

Leroux E, Ducros A. Cluster headache. Orphanet J Rare Dis. 2008;3:1-11.

Llewelyn MB, Hawkins RE, Russell SJ. Discovery of antibodies. BMJ. 1992;305(6864):1269-1272.

References (Cont'd)

Lobo ED, Hansen RJ, Balthasar JP. Antibody pharmacokinetics and pharmacodynamics. *J Pharm Sci.* 2004;93(11):2645-2668.

Robbins MS, Starling AJ, Pringsheim TM, et al. Treatment of cluster headache: The American Headache Society Evidence-Based Guidelines. *Headache*. 2016;56(7):1093-1106.

Rozen TD, Fishman RS. Cluster headache in the United States of America: demographics, clinical characteristics, triggers, suicidality, and personal burden. *Headache*. 2012;52:99-113.

Tfelt-Hansen P, Le H. Calcitonin gene-related peptide in blood: is it increased in the external jugular vein during migraine and cluster headache? A review. *J Headache Pain*. 2009;10(3):137-143.

Valenzuela NM, Hickey MJ, Reed EF. Antibody subclass repertoire and graft outcome following solid organ transplantation. *Front Immunol.* 2016;7:433.

Vidarsson G, Dekkers G, Rispens T. IgG subclasses and allotypes: from structure to effector functions. *Front Immunol.* 2014;5:520.

Voiticovschi-losob C, Allena M, De Cillis I, et al. Diagnostic and therapeutic errors in cluster headache: a hospital-based study. *J Headache Pain*. 2014;15(1):56.

Vollesen AL, Benemei S, Cortese F, et al. Migraine and cluster headache - the common link. *J Headache Pain.* 2018;19:2-15.

Vollesen ALH, Snoer A, Beske RP, et al. Effect of infusion of calcitonin gene-related peptide on cluster headache attacks: a randomized clinical trial. *JAMA Neurol.* 2018;75(10):1187-1197.

Voynov V, Chennamsetty N, Kayser V, et al. Predictive tools for stabilization of therapeutic proteins. *Mabs.* 2009;1(6):580-582.

Walker CS, Hay DL. CGRP in the trigeminovascular system: a role for CGRP, adrenomedullin and amylin receptors? *Br J Pharmacol*. 2013;170(7):1293-1307.

References (Cont'd)